Products
Potentiostats
Overview
Essential
Premium
Accessories
Battery cyclers
Overview
Research grade
Ultra-precision battery cyclers
Accessories
Impedance analyzers
Overview
All products
Accessories
Scanning probe workstations
Overview
All products
Accessories
Spectrometers
Overview
All products
Stopped-flow/quench flow
Overview
All products
Rapid solution changer
All products
Accessories
Consumables
Electrode rotators
Spectro electrochemistry
Quartz Crystal Microbalance
Battery Testing Accessories
Scanning Accessories
Material Testing Accessories
Learning Center
Energy storage and conversion
Battery
Fuel cell & electrolyser
PV
RFB
Supercapacitors
Research electrochemistry
Analytical electrochemistry
Corrosion
Sensors
Life sciences
Rapid kinetics
Spectroscopy
Surface characterisation
Materials science
Support
By Product
By Software
Technical Notes
Application Notes
Tutorials
User Manuals
About us
News
Events
Contact
Request a quote
Register my instrument
Request support
Find a distributor
Apply for a job
My favourites
My account
Newsletter
search
star_border
home
chevron_right
Learning center
chevron_right
Research electrochemistry
chevron_right
Corrosion
Corrosion
.
Uses (
)
Analysis
Instruments and set-up
Methodology and best practices
Techniques
All results in
Topics
(42)
How to correct impedance measurements when using longer cables or a test fixture
Focus on your Device under Test. How to remove parasitic impedance due to extension cables or connection interfaces
The different current and voltage setpoint options in EC/BT-Lab®
This article presents the various options available in EC/BT-Lab® for potential and current setpoints.
How to use EIS accuracy contour plots
EIS accuracy contour plots must be used to interpret errors made during EIS measurements and identify the best frequencies possible for a given impedance range.
The RRDE as a pH probe in situ
The Rotating Ring Disk Electrode (RRDE) Ring can be used as a potentiometric or amperometric in situ pH probe. This is extremely useful to study electrochemical reactions that involves OH- or H+ ions.
Effect of the staircase on current sampling.
An article detailing the effect of the staircase on current sampling
Checking and validating reference electrodes
The reference electrode is part of the 3-electrode setup. A bad reference electrode can impact negatively on measurements. In this article, we discuss the protocol necessary to check reference electrodes.
Investigation of impedance measurements using the Z Sim tool
To adjust the frequency range of your EIS experiment or just to see the shape of your model, Z Sim is available on both EC-Lab® and BT-Lab® software.
An investigation of corrosion kinetics using BioLogic’s Corr.Sim tool
Corr. Sim is a simulation tool developed to gain a better understanding of the corrosion behaviour of a material in a given environment.
dc-SECM and the SECM150
The dc-SECM technique. Includes a link to a more detailed, downloadable document.
Rotating Ring Disk Electrode: an Introduction
The principles and main uses of the Rotating Ring Disk Electrode.
How do I customize my plots?
A suitable plot with the right variables allows you directly access the results and saves a great deal of time during the analysis. In this short article we show you how...
Create and save your own protocols
Learn how to save time by configuring full experiments from previous settings; including safety limits, advanced settings, cell characteristics and external device configuration.
Levich analysis: the principles
The Levich analysis is mainly used to determine the diffusion coefficient of a redox species. But how does it work exactly?
Koutecký-Levich analysis: the principles
The Koutecký-Levich analysis is used to determine kinetic parameters of a redox reaction. But how does it work exactly?
Coatings, Corrosion and Scanning Probe Electrochemistry
A short video presentation of the benefits of scanning probe electrochemistry for the coatings and corrosion sector
Split an EIS experiment into multiple sequences: save time without compromising measurement quality
Reliable impedance measurements require the system under study to remain linear and stationary during the whole measurement sequence. This article describes the ideal configuration for studying unstable systems such as batteries or supercaps to save time while maintaining good measurement quality.
How to measure reaction kinetics parameters using Cycling Voltammetry (CV)
Learn how to measure redox reaction kinetics parameters by performing cyclic voltammetry at various potential scan rates.
QCM: Why measuring at overtones matters
The benefits of QCM measurements at overtones are described.
QCM: History and principles
The principles behind the QCM technique are described as well as an introduction to its history.
QCM: When is the Sauerbrey equation valid?
How to ensure the validity of the Sauerbrey equation
QCM: Measurement principles
The measurement principles used in BluQCM are described
SVET101: An Introduction to the Scanning Vibrating Electrode Technique
An Introduction to the Scanning Vibrating Electrode Technique
LEIS101: An Introduction to Local Electrochemical Impedance Spectroscopy
An Introduction to Local Electrochemical Impedance Spectroscopy
Connection to the cell – Part 3 – Permeation cell measurements
Last in a three part series about connection modes
Connection to the cell – Part 2 – Multi-electrode measurement
The second in a third part series of three articles about connection modes.
Connection to the cell – Part 1 – What is “ground”?
Different grounding options based on application type
Corrosion basics: determination of the corrosion current and potential
This article describes a simple method for the determination of the potential and corrosion current of a uniformly corroding electrode based on the Stern or Wagner-Traud relationship.
Rotating Disk Electrodes: their value and use
The Rotating Disk Electrode is a widely used device in electrochemistry research? But what exactly makes it so useful?
Cyclic Voltammetry: how to obtain good results…
What are the critical Cyclic Voltammetry parameters and how should you tune them correctly to ensure you get the best out of your instrument?
Understanding bandwidth & its effect on measurements
An article which gives an overview of the electronic system that sits behind a potentiostat/galvanostats and describes how it can affect your measurements.
How to check and correct the time-variance of your system under EIS measurements
Are you running EIS experiments on a corroding electrode or on a charging or discharging battery and obtaining unusual or strange data at low frequencies? You should check that the change of your system does not affect your EIS measurements. Here are a few tools available in EC-Lab® to help you deal with such situations.
Scanning probes & corrosion research
The role of scanning probe electrochemistry for research in corrosion
ZFit tutorial
Series of tutorials about ZFit, BioLogic's impedance fitting tool
Spectroelectrochemical measurements
One of the possibilities of characterizing intermediate species created during a redox process, is to couple a spectrometer with a potentiostat
A local view of corrosion
The effects of corrosion need to be considered in almost every industry. A recent NACE report [1] estimated that corrosion costs $2.5 trillion USD globally
DC electrochemical characterisation of a corrosion system
Corrosion is an unwanted spontaneous electrochemical process leading to a structural degradation of a material.
What is EIS ?
Electrochemical Impedance spectroscopy (EIS) is a powerful tool enabling the study of processes that occur at the interface of the electrode.
Data of interest -work more efficiently.
Get the most out of your blue box : how EC/BT-Lab can help you work more efficiently as well as save valuable time.
Electrochemical characterisation of a corrosion system by Impedance spectroscopy
Electrochemical impedance spectroscopy (EIS) is a powerful analytical method used to investigate the electrochemical properties of a wide range of electrochemical systems
Resolution, Precision, Accuracy, Temperature stability and Time base: The five to watch
The five characteristics that should be on every electrochemist’s radar
Freedom, flexibility and control with Modify on-the-Fly
No need to stop the experiment with EC-Lab®’s “modify-on-the-fly” functionality
Obtain high quality measurements…
This article gives some tips to improve the quality of measurements, from optimizing the setup or the connection interfaces, to the geometry of the cell itself.