How to make reliable Electrochemical Impedance Spectroscopy measurements with EIS QI™ - BioLogic Learning Center
Topic 10 min read

How to make reliable Electrochemical Impedance Spectroscopy measurements with EIS QI™

Latest updated: October 8, 2024

Introduction: Potentiostats and Quality Indicators

Electrochemical Impedance Spectroscopy (EIS) is a measurement mode that allows electrochemists to access and understand the processes taking place at the electrode interface. For more details about EIS capabilities, please see the BioLogic’s Learning Center article “What is EIS

Three quality indicators are available in EC-Lab® to ensure the reliability of EIS measurements.

1st Quality Indicator: Total Harmonic Distortion (THD)

THD indicates if the amplitude of the current or potential modulation applied to the system is small enough to consider that the system behaves linearly. If it behaves non-linearly, the output signal will contain some harmonics. THD quantifies the non-linearity by evaluating the amplitudes of the N harmonics:

$$THD_N=\frac{1}{\vert{Y_f}\vert}\sqrt{\sum^N_{k=2}\vert{Y_k}\vert^2}\tag{1}$$

where $\vert{Y_f}\vert$ is the amplitude of the signal at the fundamental frequency $f$ (or first harmonic) and $\vert{Y_f}\vert$ is the amplitude of the kth harmonic number.
THD is expressed as a percentage. Generally, it is considered that a THD below 5 % is acceptable for reliable EIS data. In EC-Lab®, it is calculated on the potential and on the current and over 7 harmonics including the fundamental ($N = 7$ in Eq. 1).

2nd Quality Indicator: the Non-Stationary Distortion (NSD)

We can distinguish two causes for the non-stationarity of a system: i) the response of the system has not reached its permanent regime; ii) the parameters defining the system are changing with time.

The response of a non-stationary system will contain, in addition to the fundamental frequency, some adjacent frequencies.

Hence the NSD indicator is defined as:

$$NSD_{\Delta f}=\frac{1}{\vert{Y_f}\vert}\sqrt{\vert{Y_{f-\Delta f}}\vert^2+\vert{Y_{f+\Delta f}}\vert^2}\tag{2}$$

where $\vert{Y_f}\vert$ is the amplitude of the signal at the fundamental frequency $f$ (or first harmonic), $\vert{Y_{f-\Delta f}}\vert$ and $\vert{Y_{f+\Delta f}}\vert$ are the amplitudes of the peaks right next to the fundamental frequency and $\Delta f$ is the frequency resolution, equal to the inverse of the total measurement time.

NSD is expressed in percentage and calculated on the potential and on the current.

3rd Quality Indicator: the Noise to Signal Ratio (NSR)

In an ideal EIS measurement, all the signal energy is contained in the fundamental frequency, but because of various factors such as the accuracy and precision of the measuring device or external perturbations, there might be some energy in other frequencies than the fundamental one, the harmonics and the adjacent frequencies. In this document, this additional signal is called noise.

NSR quantifies the extent of noise in the electrochemical measurement. It is expressed using the following formula:

$$NSR_f=\frac{1}{\vert{Y_f}\vert}\sqrt{\sum_k^{} {\vert{Y_{k\Delta f}}\vert^2}}\tag{3}$$

with: $k\Delta f \notin \{f;2f;3f;4f;5f;6f;7f;f- \Delta f; f+ \Delta f \}$

It represents all the signals not contained in:

  • The fundamental frequency,
  • The 7 harmonics used to calculate THD
  • The signal at frequencies adjacent to the fundamental frequency used to calculate NSD.

 

More Information

Click here to download a useful Questions and Answers poster on BioLogic Quality Indicators.

 

How do I use quality indicators with my BioLogic potentiostat?

Finding the right amplitude: NSR and NSD can be used to find the right AC amplitude of the input signal in your EIS measurements. The NSR needs to be minimized but the THD should not exceed 5% at all frequencies. 5% is an arbitrary value and depends on your system and on the frequency. 5% can also be used as a threshold value above which the EIS data can be considered as non-reliable.

Finding the right frequency range: similarly, NSD can also be used to establish at which frequencies your data can be considered reliable. Usually, NSD will increase at lower frequencies unless your changes are made in a faster way than the input frequency, which is never really the case. Time variance usually leads to slow changes, only visible below 1 Hz. Therefore, if your system’s time variance cannot be adapted, the data obtained at a frequency for which the NSD is above 5% should be left out.

 

For further information:

Application notes

EIS Quality Indicators: THD, NSD & NSR – Electrochemistry, Battery & Corrosion – Application Note 64

EIS Quality Indicators THD – Electrochemistry, Battery & Corrosion – Application Note 65

 

White paper

Systems and EIS quality indicators – Electrochemistry

EIS Linearity Reliability Stationarity Time-variance

Related products