Scanning probe workstations

LEIS – M470.

Scanning probe electrochemistry technique which measures spatial resolution

Used extensively for research in coatings and corrosion. LEIS is of particular use for measuring the impedance of coated samples.

Localized Electrochemical Impedance Spectroscopy is performed on BioLogic’s modular M470 system with the LEIS470 option.

Localized Electrochemical Impedance Spectroscopy (LEIS) is a scanning probe electrochemistry technique that measures electrochemical impedance with spatial resolution. The LEIS measurement is based on bulk Electrochemical Impedance Spectroscopy (EIS) in which impedance is measured as a function of applied frequency. In LEIS the bi-electrode probe is used to measure the local ac current flowing in an electrolyte above a biased sample. When LEIS is run on the M470 researchers can perform both stationary local EIS measurements and scanning measurements in which the impedance is mapped at a single frequency. These scanning measurements are sometimes referred to as Localized Electrochemical Impedance Mapping (LEIM).

LEIS has been used extensively in coatings and corrosion research. Using LEIS a wide variety of pure and alloyed metal systems have been investigated. The effectiveness of different coatings for corrosion protection, as well as the abilities of different smart coatings,  has been investigated with LEIS. Outside of the field of corrosion, LEIS is finding use in the research of battery electrodes to compare different battery compositions and different states of charge.

LEIS measurement of 200 µm gold Point in Space in water.

 

Overview: Discover the local impedance of your sample

  • Local impedance sweeps and maps
  • Fully integrated system

Measure coated or uncoated samples

LEIS has widespread use in studying the effectiveness of coatings to protect the underlying metal. Even though the sample acts as the working electrode in LEIS studies, it is possible to measure samples even when the sample has poor electrochemical activity, such as coated samples. This is possible because the nature of the LEIS experiment means it can be tuned by changing the ac frequency applied during the measurement. Using a low frequency, LEIS can be used to map the local impedance of uncoated conductive samples. If a coated sample is to be measured, however, this is possible by using a high measurement frequency.

Measurement of sample response without the influence of the probe

LEIS is a five electrode experimental setup. The sample, reference, and counter form a traditional three electrode cell at which the EIS measurement is carried out. The probe is a bi-electrode which is separate from the cell of interest, and instead only monitors this cell. Because the bi-electrode probe is not directly involved in the three-electrode cell it does not influence the processes occurring here. Therefore, the measured impedance is not a distortion of the interaction between the probe and sample, but instead it is a direct reflection of the impedance of the sample.

Workstation Software

The Scanning Electrochemical Workstation software provides unique capabilities and interactivity in support of the Model 370 and Model 470 nanometer-resolution scanning probe microscopes. This highly ergonomic software has been designed to facilitate and improve the user experience and render workflows more efficient:

  • Improved data analysis, manipulation, and interactivity
  •  Automatic measurement and sequencing functionalities.

Over 40 discrete experiments provided throughout, each with their own individual variations

Specifications

Scanning Stage
Scan Range (x,y,z) 110 mm x 110 mm x 110 mm
Minimal Step Size (x,y,z) 20 nm
Positioning Closed loop positioning, linear, zero hysteresis encoder with direct real-time readout of displacement in x, y, z
Linear position encoder resolution 20 nm
Max Scan Speed 10 mm/s
Measurement Resolution 32-bit decoder @ up to 40 MHz
Dimensions 500 mm (H) x 400 mm (W) x 675 mm (D)

 

SP-300
Compliance Voltage ±12 V
Applied Potential ±10 V
Resolution 300 µV
Measured Potential ±10 V
Resolution 1.65 µV
Current Ranges 100 pA to 1A
Maximum Current ± 500 mA
Current Resolution 76 aA
Floating Capability Floating Mode
Cell Connections 2, 3, or 4 electrode
Scan Rate 1 µV/s to 200 V/s
Modes Potentiostat, Galvanostat, OCP
EIS Capabilities
Frequency Range 10 µHz to 3 MHz
Analyzer Accuracy 1%, 1°
Frequency Resolution 0.1 nHz
3300
Compliance Voltage ±12 V
Applied Potential ±10 V
Resolution 4.7 nV
Measured Potential ±10 V
Resolution 1.2 µV
Current Ranges 1 nA to 1A
Maximum Current ± 500 mA
Current Resolution 23.8 fA
Floating Capability Standard
Cell Connections 2, 3, or 4 electrode
Scan Rate 1 µV/s to 200 V/s
Modes Potentiostat, Galvanostat, OCP
EIS Capabilities
Frequency Range 0.1 µHz to 0.1 MHz
Analyzer Accuracy 0.1%, 1°
Frequency Resolution 66 nHz
Electrometer
Impedance 1013 Ω || 7 pF typical
Bias Current 1 pA typical
Bandwidth 1 MHz
General
Available Experiments LEIS Frequency Sweep, Line Scan Area Scan

 

 

 

Brochures

Catalogs

Technical notes

Request a quote.

Our team is ready to help

Contact us