See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342977545

Handbook of Electrochemical Impedance Spectroscopy. DISTRIBUTED and MIXED IMPEDANCES

Technical Report · July 2020

DOI: 10.13140/RG.2.2.14198.01606

citations 0	;	READS 864			
3 author	3 authors, including:				
	Jean-Paul Diard BioLogic 219 PUBLICATIONS 2,580 CITATIONS SEE PROFILE	٠	Bernard Le Gorrec UJFG-INPG 108 PUBLICATIONS 1,450 CITATIONS SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Projec

Electrochemistry Labs View project

EIS quality indicators View project

DISTRIBUTED and MIXED IMPEDANCES

ER@SE/LEPMI J.-P. Diard, B. Le Gorrec, C. Montella

July 16, 2020

Contents

1	Intr	roduction				
	1.1	Lumpe	ed vs. distributed systems	5		
		1.1.1	Lumped systems	5		
		1.1.2	Distributed systems	5		
		1.1.3	Mixed lumped-distributed systems	5		
	1.2	Examp	ples in electrochemistry	5		
		1.2.1	Lumped systems	5		
		1.2.2	Distributed systems	6		
		1.2.3	Mixed lumped-distributed systems	6		
2	Imp	edance	e containing $\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$	9		
	0.1	$th\sqrt{S}$		~		
	2.1	\sqrt{S}	· · · · · · · · · · · · · · · · · · ·	9		
		2.1.1	Electrochemical reaction	9		
		2.1.2	Electrochemical impedance	9		
		2.1.3	Reduced impedance	9		
		2.1.4	Pole-zero map	9		
		2.1.5	Graphs of the reduced impedance	10		
		$\frac{\text{th }}{\sqrt{2}}$	$\frac{\overline{S}}{\overline{S}}$			
	2.2	$\frac{\sqrt{1+\alpha}}{1+\alpha}$	$\frac{5}{\sqrt{S}}$	11		
		2.2.1	Électrochemical reaction	11		
		2.2.2	Reduced Faradaic impedance	11		
		2.2.3	Nyquist diagrams	11		
	<u> </u>	$\left(1+\epsilon\right)$	$\chi \frac{\mathrm{th}\sqrt{S}}{\sqrt{S}} \frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}$	19		
	2.0	1	$+ \beta \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$	14		
		2.3.1	Electrochemical reaction	12		
		2.3.2	Reduced concentration impedance	12		
		2.3.3	Nyquist diagrams	12		
3	Mix	ed im	pedance	15		
		$\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$				
	3.1	$\frac{\sqrt{3}}{1+\alpha}$	\overline{S}_{-}	15		
		3.1.1	Pole-zero map	15		
		3.1.2	Nyquist diagrams	15		

	$1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\overline{S}}$				
	3.2	$\frac{1+\alpha}{1+\rho}\frac{\sqrt{S}}{S}$			
		3.2.1	Electrochemical reaction: Volmer-Hevrovský (V-H)	19	
		3.2.2	Reduced concentration impedance of adsorbed		
			species	19	
		3.2.3	Nyquist diagrams	19	
	3.3	4 .	$\frac{1}{\alpha + \alpha \alpha \tanh \sqrt{S}}$	21	
		$1 + \alpha$	$S + \beta S \frac{\omega \sqrt{s}}{\sqrt{S}}$		
		3.3.1	deposition	91	
		332	Beduced concentration impedance of adsorbed species	$\frac{21}{21}$	
		3.3.3	Nyquist diagrams	$\frac{21}{21}$	
			$S \frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}$		
	3.4	1	$\frac{\sqrt{S}}{\alpha + \alpha \alpha \tanh \sqrt{S}} \dots $	24	
		$1 + \alpha$	$S + \beta S \frac{m+m}{\sqrt{S}}$		
		3.4.1	deposition	24	
		3.4.2	Reduced concentration impedance of soluble	24	
			species Cl^-	24	
		3.4.3	Nyquist diagrams	24	
	95	1 -	$+ \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$	00	
	3.5	$1 + \beta$	$\overline{S + \gamma S \frac{\operatorname{th} \sqrt{S}}{S}}$	26	
		3.5.1	Electrochemical reaction: E-EAR reaction	26	
		3.5.2	Reduced concentration impedance of adsorbed species	26	
		3.5.3	Nyquist diagrams	26	
	0.0	(1 +	$-\alpha S) \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$	20	
	3.0	$1 + \beta$	$\overline{S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\overline{c}}}$	29	
		3.6.1	Electrochemical reaction: E-EAR reaction \ldots	29	
		3.6.2	Reduced concentration impedance of soluble		
			species R	29	
		3.6.3	Nyquist diagrams	29	
\mathbf{A}	Som	ne ratio	onal fractions in \sqrt{S}	33	
	A.1	Introd	uction	33	
	A.2			33	
		$1 + \sqrt{1}$	5	~ ~	
	A.3	$\frac{1}{1+(v)}$	$\overline{\overline{(S)^3}}$	33	
	A 4	1 -	$+(\sqrt{S})^2$	95	
	A.4	$\sqrt{S}(1)$	$+ \alpha(\sqrt{S})^2)$	35	
	A E	1 -	$-(\sqrt{S})^2$	25	
	А.Э	$\overline{\sqrt{S}}(1$	$\overline{-\alpha(\sqrt{S})^2)}$	J J	
R	B Reputions involving adsorbed and soluble species 20				
D	ited	0010115	monorme ausorbed and soluble species	00	
Bibliography 42				42	

Chapter 1

Introduction

1.1 Lumped vs. distributed systems

1.1.1 Lumped systems

The transfer functions of systems modeled by ordinary differential equations, often called lumped-parameter systems, are rational functions (i.e. a ratio of two polynomials in s, the Laplace variable) [1,2].

1.1.2 Distributed systems

The transfer functions of distributed parameter systems are irrational functions. The analysis of rational and irrational transfer functions differ in a number of important aspects. The most obvious differences between rational and irrational transfer functions are the poles and zeros. Irrational transfer functions often have infinitely many poles and zeros [2].

1.1.3 Mixed lumped-distributed systems

The transfer functions of mixed lumped-distributed systems contain rational and irrational functions in s.

1.2 Examples in electrochemistry

1.2.1 Lumped systems

Faradaic impedance $Z_{\rm f}$ and impedance Z of electrochemical adsorption reaction (EAR) are lumped systems [3,4]. Eq. (1.1) is a rational fraction in s (¹).

$$Z(s) = \frac{1 + R_{\rm ct}C_{\rm ads}s}{s\left((C_{\rm dl} + C_{\rm ads}) + sR_{\rm ct}C_{\rm dl}C_{\rm ads}\right)}$$
(1.1)

$$Z(s) = K \frac{1 + \alpha s}{s \left(1 + \beta s\right)}, K = \frac{1}{C_{\rm dl} + C_{\rm ads}}, \ \alpha = R_{\rm ct} C_{\rm ads}, \ \beta = \frac{R_{\rm ct} C_{\rm dl} C_{\rm ads}}{C_{\rm dl} + C_{\rm ads}} \quad (1.2)$$

¹Replacing a capacitor, for example C_{dl} , by a CPE [5] transforms a lumped impedance in a distributed impedance. This case is not subsequently envisaged.

Figure 1.1: Equivalent circuit for electrochemical adsorption reaction (EAR).

1.2.2 Distributed systems

The Faradaic impedance of a corroding electrode with mass transfer limitation (Fig 1.2) is a rational fraction in \sqrt{s} , i.e. an irrational fraction in s.

$$Z_{\rm f}(s) = \frac{R\,\sigma}{\sigma + R\sqrt{s}}\tag{1.3}$$

$$Z_{\rm f}(s) = \frac{K}{1 + \alpha \sqrt{s}}, \ K = R, \ \alpha = \frac{R}{\sigma}$$
(1.4)

Figure 1.2: Equivalent circuit for a corroding electrode with mass transfer limitation. W: Warburg element for semi-innite linear diffusion [6].

1.2.3 Mixed lumped-distributed systems

The impedance of the Randles equivalent circuit [4, 6, 7] (Fig. 1.3) is a mixed lumped and distributed system:

$$Z(s) = \frac{R_{\rm ct} + R_{\rm d} \frac{\mathrm{th} \sqrt{\tau_{\rm d} s}}{\sqrt{\tau_{\rm d} s}}}{1 + R_{\rm ct} C_{\rm dl} s + C_{\rm dl} s R_{\rm d} \frac{\mathrm{th} \sqrt{\tau_{\rm d} s}}{\sqrt{\tau_{\rm d} s}}}$$
(1.5)

$$Z(s) = K \frac{1 + \alpha \frac{\operatorname{th} \sqrt{\tau_{\mathrm{d}} s}}{\sqrt{\tau_{\mathrm{d}} s}}}{1 + \beta s + \gamma s \frac{\operatorname{th} \sqrt{\tau_{\mathrm{d}} s}}{\sqrt{\tau_{\mathrm{d}} s}}}, \quad K = R_{\mathrm{ct}}, \alpha = \frac{R_{\mathrm{d}}}{R_{\mathrm{ct}}}, \beta = R_{\mathrm{ct}} C_{\mathrm{dl}} \gamma = C_{\mathrm{dl}} R_{\mathrm{d}}$$

$$(1.6)$$

Figure 1.3: Randles equivalent circuit for a redox reactions studied on a rotating disk electrode. W_{δ} : bounded diffusion impedance [6].

Chapter 2

Impedance containing $\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$

2.1
$$\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$$

2.1.1 Electrochemical reaction

Redox reaction [4, 8, 9]:

$$O + e \leftrightarrow R$$

studied on a rotating disk electrode with mass transfer limitation.

2.1.2 Electrochemical impedance

$$Z_{\mathbf{W}_{\delta}}(s) = R_{\mathbf{d}} \frac{\mathrm{th}\,\sqrt{\tau\,s}}{\sqrt{\tau\,s}} \ (^{1}) \tag{2.1}$$

2.1.3 Reduced impedance

$$Z_{W_{\delta}}(s) = R_{d} \frac{\operatorname{th} \sqrt{\tau s}}{\sqrt{\tau s}} \Rightarrow Z(S) = \frac{Z_{W_{\delta}}(s)}{R_{d}} = \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}, \ S = \tau s = \Sigma + \mathrm{i} u \quad (2.2)$$

2.1.4 Pole-zero map

Infinite product expansion [12–16]:

$$\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}} = \frac{1}{1 + \frac{4S}{\pi^2}} \prod_{k=1}^{\infty} \frac{1 + \frac{S}{(k\pi)^2}}{1 + \frac{4S}{((2k+1)\pi)^2}} = P_{\infty}$$
(2.3)

Thanks to Eq. (2.3)

¹This expression could be replaced by a more accurate one [10, 11]. This case is not subsequently envisaged.

• infinity of interlaced real poles and zeros (Fig. 2.1).

$$s_{\rm p} = -\frac{1}{4}((2k+1)\pi)^2, \ k = 1\cdots\infty$$
 (2.4)

$$s_{\rm Z} = -(k \pi)^2, \ k = 1 \cdots \infty$$
 (2.5)

2.1.5 Graph of the reduced impedance

3D plot of the modulus (Fig. 2.2).

Figure 2.2: 3D plot of the modulus of $\frac{\text{th }\sqrt{S}}{\sqrt{S}}$.

2.2.
$$\frac{\frac{TH\sqrt{S}}{\sqrt{S}}}{1+\alpha \frac{TH\sqrt{S}}{\sqrt{S}}}$$
$$2.2 \frac{\frac{th\sqrt{S}}{\sqrt{S}}}{1+\alpha \frac{th\sqrt{S}}{\sqrt{S}}}$$

2.2.1 Electrochemical reaction

Corroding electrode with mass transfert limitation:

$$M \to M^{n+} + n e^-$$

 $O_2 + 4 e^- + 4 H^+ \to 2 H_2O$

2.2.2 Reduced Faradaic impedance

$$Z(S) = \frac{\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}{1 + \alpha \frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}, \ u_{c1} = 2.54, u_{c2} = \alpha^2$$
(2.6)

Figure 2.3: Nyquist diagrams calculated from Eq. (2.6). Red dots : $u_{c1} = 2.54$, black dots : $u_{c2} = \alpha^2$.

- $u_{c1} \gg u_{c2}, 2.54 \gg \alpha^2 \Rightarrow$ quarter of a lemniscate,
- $u_{c1} \ll u_{c2}, 2.54 \ll \alpha^2 \Rightarrow$ quarter of a circle (see Annex A.2).

2.3
$$\frac{\left(1 + \alpha \frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}\right) \frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}{1 + \beta \frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}$$

2.3.1 Electrochemical reaction

EE reaction [17]:

$$\begin{array}{l} R \leftrightarrow X + e \\ X \leftrightarrow O + e \end{array}$$

studied on a rotating disk electrode with $D_{\rm R} = D_{\rm X} = D_{\rm O}$.

2.3.2 Reduced concentration impedance

Concentration impedances of soluble species:

$$Z_{\mathbf{X}_{i}}(S) = \frac{\left(1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}\right) \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}, \ \alpha, \beta \ge 0$$
(2.7)

2.3.3 Nyquist diagrams

Figs. 2.4, 2.5 and 2.6.

Figure 2.4: Some amazing Nyquist diagrams calculated from Eq. (2.7), $\alpha = -1$, $\beta = -10$ (left), $\beta = -10^4$ (right). Red dots : $u_{c1} = 2.54$, black dots : $u_{c2} = \beta^2$. a: $\alpha = -1$, $\beta = -10$, b: $\alpha = -1$, $\beta = -10^{-4}$, c: $\alpha = -2.5$, $\beta = -10^{-5}$, d: $\alpha = -2.5$, $\beta = -10$ (Hokusai's great wave).

2.3.
$$\frac{\left(1 + \alpha \frac{TH\sqrt{S}}{\sqrt{S}}\right) \frac{TH\sqrt{S}}{\sqrt{S}}}{1 + \beta \frac{TH\sqrt{S}}{\sqrt{S}}}$$

Figure 2.5: Array of impedance diagrams calculated from Eq. (2.7). Red dots : $u_{c1} = 2.54$, black dots : $u_{c2} = \beta^2$.

Figure 2.6: Array of impedance diagrams calculated from Eq. (2.7). Red dots : $u_{c1} = 2.54$.

Chapter 3

Impedance containing lumped and distributed elements

3.1
$$\frac{\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}{1+\alpha S}$$

$$Z(S) = \frac{\frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \alpha S} \tag{3.1}$$

Characteristic frequencies:

- $u_{c1} = 2.54$
- $u_{\mathrm{c}2} = 1/\alpha$

3.1.1 Pole-zero map

• Same zeros as $\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$

• Same poles as $\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$ plus one real pole $\left(-\frac{1}{\alpha}\right)$ (Figs. 3.4-3.1).

3.1.2 Nyquist diagrams

Figs. 3.4-3.1.

•
$$u_{c1} \ll u_{c2} \Rightarrow Z(S) \approx \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$$

• $u_{c1} \gg u_{c2} \Rightarrow Z(S) \approx \frac{1}{1 + \alpha S}$

Figure 3.1: Pole-zero map and Nyquist diagram of $\frac{1}{1+\alpha S} \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$. $\alpha = 10^{-4}$. Red dot: $u_{c1} = 2.54$, black dot: $u_{c2} = 1/\alpha$.

Figure 3.2: Pole-zero map and Nyquist diagram of $\frac{1}{1+\alpha S} \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$. $\alpha = 10^{-2}$. Red dot: $u_{c1} = 2.54$, black dot: $u_{c2} = 1/\alpha$.

3.1.
$$\frac{\frac{TH\sqrt{S}}{\sqrt{S}}}{1+\alpha S}$$

Figure 3.3: Pole-zero map and Nyquist diagram of $\frac{1}{1+\alpha S} \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$. $\alpha = 1$ $(-\frac{1}{\alpha} > -\frac{\pi^2}{4})$. Red dot: $u_{c1} = 2.54$, black dot: $u_{c2} = 1/\alpha$.

Figure 3.4: Pole-zero map and Nyquist diagram of $\frac{1}{1+\alpha s} \frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}$. $\alpha = 10^3$ $(-\frac{1}{\alpha} > -\frac{\pi^2}{4})$. Red dot: $u_{c1} = 2.54$, black dot: $u_{c2} = 1/\alpha$.

Figure 3.5: Change of Nyquist diagram of $\frac{1}{1+\alpha S} \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$ with increasing value of α from 10^{-3} to $10^{0.9}$. Decimal logarithm of α reported on the Nyquist diagrams. Red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/\alpha$.

3.2.
$$\frac{1 + \alpha \frac{TH\sqrt{S}}{\sqrt{S}}}{1 + \beta S}$$
19
3.2.
$$\frac{1 + \alpha \frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}{1 + \beta S}$$

3.2.1 Electrochemical reaction: Volmer-Heyrovský (V-H)

Electrochemical reaction: Volmer-Heyrovský (V-H) [4,8]

$$\begin{array}{c} A^+ + s + e^- \rightarrow A, s \\ A^+ + A, s + e^- \rightarrow A_2 + s \end{array}$$

3.2.2 Reduced concentration impedance of adsorbed species

$$Z_{\theta}^{*}(S) = \frac{1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta S} = \frac{1}{1 + \beta S} + \frac{\alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta S}$$
(3.2)

$$\alpha \to \infty \Rightarrow Z_{\theta}^*(S) \approx \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}} \Rightarrow u_{\mathrm{c1}} = 2.54$$
 (3.3)

$$\alpha \to 0 \Rightarrow Z_{\theta}^{*}(S) \approx \frac{1}{1 + \beta \,\mathrm{i}\, u} \Rightarrow u_{\mathrm{c}2} = \frac{1}{\beta}$$
(3.4)

3.2.3 Nyquist diagrams

Figs. 3.6 and 3.7.

Figure 3.6: Impedance diagrams calculated from Eq. (3.2)). a : $\alpha = 1$, $\beta = 10^{-5}$, b : $\alpha = 10^3$, $\beta = 10^{-3}$, c : $\alpha = 10^{-3}$, $\beta = 10^{-3}$, d : $\alpha = 10^3$, $\beta = 1$. Characteristic dimensionless frequencies: red dots : $u_{c1} = 2.54$, black dots : $u_{c2} = 1/\beta$.

Figure 3.7: Array of impedance diagrams calculated from Eq. (3.2). Impedance diagrams are made of one or two arcs. Characteristic dimensionless frequencies: red dots : $u_{c1} = 2.54$, black dots : $u_{c2} = 1/\beta$.

3.3.
$$\frac{1}{1 + \alpha S + \beta S \frac{TH\sqrt{S}}{\sqrt{S}}}$$

3.3
$$\frac{1}{1 + \alpha S + \beta S \frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}$$

3.3.1 Electrochemical reaction: catalytic copper deposition

$$\begin{array}{l} Cu^{2+}+Cl^{-}+s+e^{-}\rightarrow CuCl, \\ CuCl, s+e^{-}\rightarrow Cu+Cl^{-}+s \end{array}$$

Hypotheses: no mass transfer limitation for Cu^{2+} , $(Cu^{2+}(0,t) \approx Cu^{2+})$, kinetic irreversibility of the two steps [18,19].

3.3.2 Reduced concentration impedance of adsorbed species

$$Z(S) = \frac{1}{1 + \alpha S + \beta S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$$
(3.5)

- Poles and zeros of $Z^*(S)$ are real and interlaced.
- Zeros of Z(S) are the poles of $\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}$: $-\frac{1}{4}((2k+1)\pi)^2$, $k = 1 \cdots \infty$.
- Characteristic dimensionless frequencies: $u_{\rm c1}=2.54,~u_{\rm c2}=1/\alpha,~u_{\rm c3}=1/\beta$

3.3.3 Nyquist diagrams

Figs. 3.8 and 3.9.

Figure 3.8: Pole-zero map and impedance diagrams calculated from Eq. (3.5). $\alpha = 10^{-2}$, $\beta = 1$, red dot : $u_{c1} = 2.54$, black dot: $u_{c2} = 1/\alpha$, blue dot: $u_{c3} = 1/\beta$.

3.3.
$$\frac{1}{1 + \alpha S + \beta S \frac{TH\sqrt{S}}{\sqrt{S}}}$$

Figure 3.9: Graphics array representation of the impedance diagram, calculated form Eq. (3.5) and plotted using the Nyquist representation (orthonormal scales) for catalytic copper deposition. Characteristic dimensionless frequencies: red dots : $u_{c1} = 2.54$, black dots: $u_{c2} = 1/\alpha$, blue dots: $u_{c3} = 1/\beta$.

3.4
$$\frac{S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \alpha S + \beta S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$$

3.4.1 Electrochemical reaction: catalytic copper deposition

$$Cu^{2+}+Cl^- + s + e^- \rightarrow CuCl,s$$

 $CuCl,s + e^- \rightarrow Cu + Cl^- + s$

Hypotheses: no mass transfer limitation for Cu^{2+} , $(Cu^{2+}(0,t) \approx Cu^{2+})$, kinetic irreversibility of the two steps [19].

3.4.2 Reduced concentration impedance of soluble species Cl⁻

$$Z(S) = \frac{S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \alpha S + \beta S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$$
(3.6)

3.4.3 Nyquist diagrams

- Poles and zeros of Z(S) are real.
- Zeros of Z(S) are the zeros of $\frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$ $(S_{\mathrm{Z}} = -(k \pi)^2, \ k = 1 \cdots \infty)$ plus one zero at the origine of the complex plane (derivator).
- Characteristic dimensionless frequencies: $u_{c1} = 2.54$, $u_{c2} = 1/\alpha$, $u_{c3} = 1/\beta$, $u_{c4} = (\beta/\alpha)^2$.

Fig. 3.10.

3.4.
$$\frac{S \frac{TH\sqrt{S}}{\sqrt{S}}}{1 + \alpha S + \beta S \frac{TH\sqrt{S}}{\sqrt{S}}}$$

Figure 3.10: Graphics array representation of the reduced impedance diagram calculated from Eq. (3.6) and plotted using the Nyquist complex plane representation (orthonormal scales) for catalytic copper deposition. Characteristic dimensionless frequencies: red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/\alpha$, blue dots: $u_{c3} = 1/\beta$, green dots: $u_{c4} = (\beta/\alpha)^2$.

3.5
$$\frac{1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$$

3.5.1 Electrochemical reaction: E-EAR reaction [20]

 $\begin{array}{l} R+s \rightarrow O+s+n_1 \; e \\ A^-+s \leftrightarrow A, s+n_2 \; e^- \end{array}$

3.5.2 Reduced concentration impedance of adsorbed species

$$Z(S) = \frac{1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}, \ \alpha, \ \beta, \ \gamma \ge 0$$
(3.7)

3.5.3 Nyquist diagrams

Figure 3.11: Graphics array representation of the Nyquist diagram for the impedance calculated from Eq. (3.7) and plotted using the Nyquist representation (orthonormal scales). Characteristic dimensionless angular frequencies: red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/\beta_1$. $\gamma = 10^{-2}$.

3.5.
$$\frac{1 + \alpha \frac{TH\sqrt{S}}{\sqrt{S}}}{1 + \beta S + \gamma S \frac{TH\sqrt{S}}{\sqrt{S}}}$$

Figure 3.12: Graphics array representation of the Nyquist diagram for the impedance calculated from Eq. (3.7) and plotted using the Nyquist representation (orthonormal scales). Characteristic dimensionless angular frequencies: red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/\beta_1$. $\gamma = -10^{-1}$.

Figure 3.13: Graphics array representation of the Nyquist diagram for the impedance calculated from Eq. 3.7 and plotted using the Nyquist representation (orthonormal scales). α , β , $\gamma < 0$. Characteristic dimensionless angular frequencies: red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/|\beta_1|$. $\alpha, \beta, \gamma < 0, \gamma = -10^{-1}$.

3.6.
$$\frac{(1+\alpha S)\frac{TH\sqrt{S}}{\sqrt{S}}}{1+\beta S+\gamma S\frac{TH\sqrt{S}}{\sqrt{S}}}$$
$$\mathbf{3.6} \frac{(1+\alpha S)\frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}}{1+\beta S+\gamma S\frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}}$$

3.6.1 Electrochemical reaction: E-EAR reaction [20]

$$\begin{array}{l} R+s \rightarrow O+s+n_1 \; e \\ A^-+s \rightarrow A, s+n_2 \; e^- \end{array}$$

3.6.2 Reduced concentration impedance of soluble species R

$$Z(S) = \frac{(1+\alpha S) \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1+\beta S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}, \ \alpha, \ \beta, \ \gamma \ge 0$$
(3.8)

3.6.3 Nyquist diagrams

Figs. 3.14 and 3.15.

Figure 3.14: Graphics array representation of the Nyquist diagram for the impedance calculated from Eq. (3.8) and plotted using the Nyquist representation (orthonormal scales). Characteristic dimensionless angular frequencies: red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/\beta$. $\gamma = 10^{-3}$.

3.6.
$$\frac{(1+\alpha S)\frac{TH\sqrt{S}}{\sqrt{S}}}{1+\beta S+\gamma S\frac{TH\sqrt{S}}{\sqrt{S}}}$$

Figure 3.15: Graphics array representation of the Nyquist diagram for the impedance calculated from Eq. (3.8) and plotted using the Nyquist representation (orthonormal scales). α , β , $\gamma < 0$. Characteristic dimensionless angular frequencies: red dots: $u_{c1} = 2.54$, black dots: $u_{c2} = 1/|\beta|$. $\gamma = 10^{-3}$.

CHAPTER 3. MIXED IMPEDANCE

Appendix A

Some rational fractions in \sqrt{S}

A.1 Introduction

The use of a rational fraction in \sqrt{S}

$$Z(\sqrt{S}) = \frac{\sum_{m=0}^{N} b_m(\sqrt{S})^m}{\sum_{p=0}^{P} a_p(\sqrt{S})^p}$$
(A.1)

has been proposed by Pintelon et al. [21,22]. Some rational fraction in \sqrt{S} are studied below.

A.2
$$\frac{1}{1+\sqrt{S}}$$
$$H(u) = \frac{1}{1+\sqrt{1}u}$$
(A.2)

Re
$$H(u) = \frac{\sqrt{2}\sqrt{u} + 2}{2\left(u + \sqrt{2}\sqrt{u} + 1\right)}$$
, Im $H(u) = -\frac{\sqrt{u}}{\sqrt{2}\left(u + \sqrt{2}\sqrt{u} + 1\right)}$ (A.3)

$$|H(u) - (1/2 + i/2)| = \sqrt{(\text{Re } H(u) - 1/2)^2 + (\text{Im } H(u) - 1/2)^2} = \frac{\sqrt{2}}{2}$$

$$\Rightarrow \text{ circle, radius} = \frac{\sqrt{2}}{2} \quad (A.4)$$

Nyquist diagram: Fig. A.1.

A.3
$$\frac{1}{1 + (\sqrt{S})^3}$$

 $H(u) = \frac{1}{1 + (i u)^{(3/2)}}$ (A.5)

Figure A.1: Nyquist diagram of $\frac{1}{1 + \sqrt{i u}}$. One quarter circle. $u_c = 1$, Im $H(u_c) = -\frac{1}{\sqrt{2}(2 + \sqrt{2})}$.

Re
$$H(u) = \frac{\sqrt{2}u^{3/2} - 2}{2\left(\sqrt{2}u^{3/2} - u^3 - 1\right)}$$
, Im $H(u) = -\frac{u^{3/2}}{-2u^{3/2} + \sqrt{2}u^3 + \sqrt{2}}$ (A.6)

$$|H(u) - (1/2 - i/2)| = \sqrt{(\text{Re } H(u) - 1/2)^2 + (\text{Im } H(u) - 1/2)^2} = \frac{\sqrt{2}}{2}$$

$$\Rightarrow \text{ circle, radius} = \frac{\sqrt{2}}{2} \quad (A.7)$$

Remarkable frequencies

$$u_1 = \sqrt[3]{3 - 2\sqrt{2}}, \ u_2 = 1, \ u_3 = \sqrt[3]{2}, \ u_4 = \sqrt[3]{3 + 2\sqrt{2}}$$
 (A.8)

Nyquist diagram: Fig. A.2.

Figure A.2: Nyquist diagram of $\frac{1}{1 + (i u)^{3/2}}$. Three quarter circle.

A.4.
$$\frac{1 + (\sqrt{S})^2}{\sqrt{S}(1 + \alpha(\sqrt{S})^2)}$$
 35
A.4 $\frac{1 + (\sqrt{S})^2}{\sqrt{S}(1 + \alpha(\sqrt{S})^2)}$

$$H(u) = \frac{1 + (\sqrt{iu})^2}{\sqrt{iu} (1 + \alpha (\sqrt{iu})^2)}$$
(A.9)

Re
$$H(u) = \frac{u(\alpha(u-1)+1)+1}{\sqrt{2}\sqrt{u}(\alpha^2 u^2+1)}$$
, Im $H(u) = \frac{-u(\alpha u + \alpha - 1) - 1}{\sqrt{2}\sqrt{u}(\alpha^2 u^2+1)}$ (A.10)

Three different limiting cases

• $\alpha \ll 1$, Nyquist and Bode diagrams: Fig. A.3

$$u_1 = u_{\text{Im } H=0} = \frac{-\sqrt{\alpha^2 - 6\alpha + 1} - \alpha + 1}{2\alpha} \approx 1$$
 (A.11)

$$u_2 = u_{\text{Im } H=0} = \frac{+\sqrt{\alpha^2 - 6\alpha + 1} - \alpha + 1}{2\alpha} \approx \frac{1}{\alpha}$$
 (A.12)

- $\alpha = 1, H(u) = \frac{1}{\sqrt{\mathrm{i}u}}$
- $\alpha \gg 1$, Nyquist diagram: Fig. A.4

$$u_1 = u_{\text{Re}H=0} = \frac{-\sqrt{\alpha^2 - 6\alpha + 1} + \alpha - 1}{2\alpha} \approx \frac{1}{\alpha}$$
 (A.13)

$$u_2 = u_{\text{Re}H=0} = \frac{\sqrt{\alpha^2 - 6\alpha + 1} + \alpha - 1}{2\alpha} \approx 1$$
 (A.14)

A.5
$$\frac{1 - (\sqrt{S})^2}{\sqrt{S} (1 - \alpha(\sqrt{S})^2)}$$

 $H(u) = \frac{1 - (\sqrt{iu})^2}{\sqrt{iu} (1 - \alpha(\sqrt{iu})^2)}$ (A.15)

Re
$$H(u) = \frac{u(\alpha + \alpha u - 1) + 1}{\sqrt{2}\sqrt{u}(\alpha^2 u^2 + 1)}$$
, Im $H(u) = \frac{u(\alpha + \alpha(-u) - 1) - 1}{\sqrt{2}\sqrt{u}(\alpha^2 u^2 + 1)}$ (A.16)

Three different limiting cases

• $\alpha \ll 1,$ Nyquist diagram: Fig. A.5

$$u_1 = u_{\text{Re } H=0} = \frac{-\sqrt{\alpha^2 - 6\alpha + 1} - \alpha + 1}{2\alpha} \approx 1$$
 (A.17)

$$u_2 = u_{\text{Re }H=0} = \frac{\sqrt{\alpha^2 - 6\alpha + 1} - \alpha + 1}{2\alpha} \approx \frac{1}{\alpha}$$
 (A.18)

•
$$\alpha = 1, H(u) = \frac{1}{\sqrt{\mathrm{i}u}}$$

• $\alpha \gg 1$.

Figure A.3: Nyquist and Bode (modulus) diagram of $\frac{1 + (\sqrt{iu})^2}{\sqrt{iu} (1 + \alpha (\sqrt{iu})^2)}$. $a \ll 1$. Red dot: $u_2 \approx 1/\alpha$, black dot: $u_1 = 0 \approx 1$.

Figure A.4: Nyquist and Bode (modulus) diagram of $\frac{1 + (\sqrt{iu})^2}{\sqrt{iu} (1 + \alpha (\sqrt{iu})^2)}$. $a \gg 1$. Red dot: $u_{\text{Im H}=0} \approx 1/\alpha$, black dot: $u_{\text{Im H}=0} \approx 1$.

A.5.
$$\frac{1 - (\sqrt{S})^2}{\sqrt{S} (1 - \alpha(\sqrt{S})^2)}$$

Figure A.5: Nyquist and Bode (modulus) diagram of $\frac{1 - (\sqrt{iu})^2}{\sqrt{iu} (1 - \alpha (\sqrt{iu})^2)}$. $a \ll 1$. Red dot: $u_2 = \approx 1/\alpha$, black dot: $u_1 = 0 \approx 1$.

Appendix B

Impedance structure of reactions involving both adsorbed and soluble species

Table B.1: Impedance structure of reactions involving both adsorbed and soluble species. First order denominator.

Expression	Reaction	Impedance
$\frac{1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta S}$	$\begin{array}{c} (\text{V-H})\\ \text{A}^+ + \text{s} + \text{e}^- \rightarrow \text{A,s}\\ \text{A}^+ + \text{A,s} + \text{e}^- \rightarrow \text{A}_2 + \text{s} \end{array}$	$Z_{ heta}$

Table B.2: Impedance structure of reactions involving both adsorbed and soluble species. Second order denominator.

Expression	Reaction	Impédance
$\frac{1+\alphas+\beta\frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}+\gammas\frac{\mathrm{th}\sqrt{S}}{\sqrt{S}}}{1+\deltaS+\epsilonS^2}$	(V-H) with desorption $A^+ + s + e^- \rightarrow A,s$ $A^+ + A,s + e^- \rightarrow A_2,s$ $A_2,s \rightarrow A_2 + s$	$Z_{ heta}$

Table B.3: Impedance structure of reactions involving both adsorbed and soluble species. Dénominateur : $1 + \alpha S + \beta \frac{\operatorname{th} \sqrt{S}}{\sqrt{\alpha}}$

Expressions	\sqrt{S} Reactions	Impédances
$\frac{1}{1 + \alpha S + \beta \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$	(catalytic) $A^{2+} + B^- + s + e^- \rightarrow AB,s$ $AB,s + e^- \rightarrow A + B^- + s$ Hyp. $A^{2+}(0,t) = cte$	$Z_{ heta}$
$\frac{\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}{1+\betas+\gammaS\frac{\operatorname{th}\sqrt{S}}{\sqrt{S}}}$	(catalytic) $A^{2+} + B^- + s + e^- \rightarrow AB,s$ $AB,s + e^- \rightarrow A + B^- + s$ Hyp. $A^{2+}(0,t) = cte$	$Z_{ m B^-}$

Table B.4: Impedance structure of reactions involving both adsorbed and soluble species. Dénominateur : $1 + \beta S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}$.

Expressions	\sqrt{S} Reactions	Impedances
$\frac{1 + \alpha S}{1 + \beta S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$	$(V-H)#2$ $A^+ + s + e^- \rightarrow A,s$ $A,s + e^- \rightarrow A^- + s$	$Z_{ heta}$
$\frac{1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1 + \beta S + \gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$	$\begin{array}{c} (\text{E-EAR}) \\ \text{R} + \text{s} \rightarrow \text{O} + \text{s} + \text{n}_1 \text{ e} \\ \text{A}^- + \text{s} \leftrightarrow \text{A}, \text{s} + \text{n}_2 \text{ e}^- \end{array}$	$Z_{ heta}$
$\frac{(1+\alpha S) \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}{1+\beta S+\gamma S \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}}}$	(E-EAR) $\text{R} + \text{s} \rightarrow \text{O} + \text{s} + \text{n}_1 \text{ e}$ $\text{A}^- + \text{s} \leftrightarrow \text{A}, \text{s} + \text{n}_2 \text{ e}^-$ $(\text{V-H}) \# 2$	$Z_{ m R}$
	$\begin{array}{c} \mathbf{A^{+} + s + e^{-} \rightarrow A, s} \\ \mathbf{A, s + e^{-} \rightarrow A^{-} + s} \end{array}$	Z_{A^+}

Table B.5: Impedance structure of reactions involving both adsorbed and soluble species. Dénominateur : $1 + \beta s + \gamma \frac{\operatorname{th} \sqrt{S}}{\overline{c}} + \delta S \frac{\operatorname{th} \sqrt{S}}{\overline{c}}$.

species. Denominateur : 1 + p s +	\sqrt{S} \sqrt{S} \sqrt{S}	
Expression	Reaction	Impedance
$\frac{1 + \alpha \frac{\operatorname{th} \sqrt{S}}{\sqrt{s}}}{1 + \beta S + \gamma \frac{\operatorname{th} \sqrt{S}}{\sqrt{S}} + \delta s \frac{\operatorname{th} \sqrt{S}}{\sqrt{s}}}$	(DP3) $M, s \to M^{2+} + s + 2 e^{-}$ $M, s + A^{2-} \to MA, s + 2 e^{-}$ $MA, s + B \to MAB + s$ Hyp. $A^{2-}(0, t) = A^{2-*}$	$Z_{ m s}$

Bibliography

- G. C. Temes and J. W. LaPatra. Introduction to Circuits Synthesis and Design. McGraw-Hill, New-York, 1977.
- [2] R. Curtain and K. Morris. Transfer functions of distributed parameter systems: A tutorial. Automatica, 45:1101 – 1116, 2009.
- [3] J.-P. Diard, B. Le Gorrec, and C. Montella. *Cinétique électrochimique*. Hermann, Paris, 1996.
- [4] Handbook of EIS Faradaic impedance library.
 www.bio-logic.info/potentiostat-electrochemistry-ec-lab/apps-literature/eisliterature/hanbook-of-eis/.
- [5] Handbook of EIS Electrical circuits containing CPEs. www.bio-logic.info/potentiostat-electrochemistry-ec-lab/apps-literature/eisliterature/hanbook-of-eis/.
- [6] Handbook of EIS Diffusion impedances. www.bio-logic.info/potentiostat-electrochemistry-ec-lab/apps-literature/eisliterature/hanbook-of-eis/.
- [7] J. E. Randles. Kinetics of rapid electrode reactions. *Discuss. Faraday Soc.*, 1:11, 1947.
- [8] Interactive equivalent circuit library. http://www.bio-logic.info/potentiostat-electrochemistry-ec-lab/appsliterature/interactive-eis/interactive-faradaic-impedance-library/.
- [9] J.-P. Diard and C. Montella. Impedance of a Redox Reaction (E) at a Rotating Disk Electrode (RDE). Wolfram Demonstrations Project, 2010. http://demonstrations.wolfram.com/ImpedanceOfARedoxReactionEAtARotatingDiskElectrodeRDE/.
- [10] R. Michel and C. Montella. Diffusion-convection impedance using an efficient analytical approximation of the mass transfer function for a rotating disk. J. Electroanal. Chem, 736:139 – 146, 2015.
- [11] J.-P. Diard and C. Montella. Re-examination of the diffusion-convection impedance for a uniformly accessible rotating disk. computation and accuracy. J. Electroanal. Chem., 742:37 – 46, 2015.
- [12] J. Crank. The Mathematics of Diffusion. Clarendon Press, Oxford, 2 edition, 1975.
- [13] F. Berthier, J.-P. Diard, B. Le Gorrec, and C. Montella. La résistance de transfert d'électrons d'une réaction électrochimique peut-elle être négative ? C. R. Acad. Sci. Paris, Série II b, 325:21–26, 1997.
- [14] F. Berthier, J.-P. Diard, and C. Montella. Développement en produits infinis des opérateurs de transport de matière. Application en spectroscopie d'impédance électrochimique et en voltampérométrie linéaire. In C. Gabrielli, editor, *Proceeding*

of the 11th Forum sur les Impédances Électrochimiques, pages 189–196, Paris, December 1998.

- [15] F. Berthier, J.-P. Diard, and C. Montella. Hopf bifurcation and sign of the transfer resistance. *Electrochim. Acta*, 44:2397–2404, 1999.
- [16] F. Berthier, J.-P. Diard, and C. Montella. Numerical solution of coupled systems of ordinary and partial differential equations. Application to the study of electrochemical insertion reaction by linear sweep voltammetry. J. Electroanal. Chem., 502:126–131, 2001.
- [17] J.-P. Diard and C. Montella. Non-intuitive features of equivalent circuits for analysis of EIS data. The example of EE reaction. J. Electroanal. Chem., 735:99 – 110, 2014.
- [18] C. Gabrielli, P. Moçotéguy, H. Perrot, and R. Wiart. Mechanism of copper deposition in a sulphate bath containing chlorides. J. Electroanal. Chem., 572:367–375, 2004.
- [19] J.-P. Diard and C. Montella. Unusual concentration impedance for catalytic copper deposition. J. Electroanal. Chem., 590:126–137, 2006.
- [20] M.B. Molina Concha, M. Chatenet, C. Montella, and J.-P. Diard. A Faradaic impedance study of E-EAR reaction. J. Electroanal. Chem, 696:24 – 37, 2013.
- [21] R. Pintelon and J. Schoukens. System Identification. A frequency domain approach. IEEE Press, Piscataway, USA, 2001.
- [22] L. Pauwels, W. Simons, A. Hubin, J. Schoukens, and R. Pintelon. Key issues for reproducible impedance measurements and their well-founded error analysis in a silver electrodeposition system. *Electrochim. Acta*, 47:2135 – 2141, 2002.