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Determination of the diffusion coefficient of an inserted species 
in a host electrode with EIS, PITT and GITT techniques 

I. Introduction

The main electrochemical reaction in a battery 
intercalation electrode such as an Li-ion 
battery is the insertion reaction. 

In the case of a direct Li+ insertion, the 
equation, as a reduction reaction, writes: 

Li+ + 〈 〉 + e− ↔ 〈Li〉

With 〈 〉 an empty insertion site, and 〈Li〉 an 
inserted Li ion within the host material. 

The sketch below (Fig. 1) shows the linear 
insertion or linear restricted diffusion of 〈Li〉 in 
a thin film electrode of a thickness L.  

Figure 1 : Schematic of a direct insertion 
reaction in a thin film electrode, under restricted 
linear diffusion conditions. The reaction is a 
reduction reaction that occurs in positive 
electrode during discharge or negative electrode 
during charge. 

This mechanism is chosen because it can 
model, in a simple way, the electrochemical 
process taking place during the insertion and 
desinsertion of a species into a thin host 
material. 

The blue curve is the concentration of 〈Li〉 
within the host material. At a length L, which is 
the host material thickness: 

𝐽〈Li〉 = 0

With 𝐽〈Li〉 the diffusion flux of 〈Li〉. 

The diffusion coefficients of the inserted 
species are the key parameters that determine 
battery cell properties. The larger the diffusion 
coefficient value is, the faster or rather the 
more facile the insertion/desinsertion of the 
inserted species is, and eventually, the better 
the battery performance is. 

Chronoamperometry and chronopotentiome-
try are traditional techniques used to 
measure diffusion coefficient in the case of a 
semi-infinite linear diffusion [1-3]. In the case 
of bounded diffusion, several techniques and 
analyses are available such as Levich analysis 
[4] and EIS fitting with the Winf element [5]. 
Impedance analysis can also be performed 
on commercial Li-ion batteries to try to 
derive information concerning the 
diffusion coefficient of the inserted species [6].

In this note we will first present the methods to 
obtain the diffusion coefficient in the case of a 
system where a restricted linear diffusion 
reaction is involved, using results from 
Electrochemical Impedance Spectroscopy (EIS), 
Galvanostatic Intermittent Titration Technique 
(GITT) and Potentiostatic Intermittent Titration 
Technique (PITT) experiments. 

We wil then present some results and analyses 
obtained on a supercapacitor, which show the 
typical behaviour associated to a linear 
restricted insertion, and on an AC Dummy Cell 
for BCS, which represents the typical behaviour 
of a two-electrode Li-ion battery cell. 

The limits of the described methods and the 
conditions in which they should be applied will 
also be made clear. 

II. Measurement methods

1. EIS



For an electrode, the impedance of the 
restricted diffusion process has the following 
expression [7]: 

𝑍M(𝑓) = 𝑅d

coth √τd𝑗2𝜋𝑓

√τd𝑗2𝜋𝑓

With τd the diffusion time constant in s, and 𝑅d 
the diffusion resistance in Ω, associated with 
the restricted linear diffusion mechanism. 

The Nyquist graph of such impedance is shown 
in Fig. 2: the impedance curve is at higher 
frequencies a straight line making an angle of    
-π/4 with the real axis as can be seen with the 
Warburg element and at lower frequencies a 
vertical line, similar to a capacitor. 

Fitting the graph with the expression shown in 
Eq. 3 will give access to both τd and 𝑅d. These 
two parameters can otherwise be determined 
by using the characteristic frequency 𝑓c, also 
named knee-point [8]. 

𝑓c =
3.88

2𝜋𝜏d
=

3.88𝐷X

𝐿²

With 𝐷X the diffusion coefficient of the species 
X in a given medium, and L the thickness of this 
medium, as defined in Fig. 1. 

We also have: 

Re(𝑍𝑓c
) = −Im(𝑍𝑓c

) =
𝑅d

3

Where Re(𝑍𝑓c
) and Im(𝑍𝑓c

) are the real part 

and the imaginary part, respectively, of the 
impedance at the characteristic frequency 𝑓c. 

Figure 2 : Nyquist diagram of the impedance of 
the M element, characteristic of the linear 
restricted diffusion.  

The faradaic impedance 𝑍f of the reaction 
described in Eq. 1 is : 

𝑍f(𝑓) = 𝑅ct + 𝑍M(𝑓)

With 𝑅ct the charge transfer resistance.  

The electrode impedance also comprises a 
resistance in series as well as a capacitor in 
parallel to account for the ohmic contribution 
of the electrolyte and other components and 
the double layer capacitance, respectively. 

A typical electrical equivalent circuit for a host 
material electrode and its interface within a 
battery cell is given below (Fig. 3a) as well as a 
typical Nyquist graph of its impedance (Fig. 3b) 
[7]. 

a)  

b)

Figure 3 : a) Equivalent circuit for the direct 
insertion reaction in a thin film electrode, under 
restricted linear diffusion conditions; b) Typical 
Nyquist graph (black dot : characteristic 
frequency fc; Blue curve : Zf + RΩ, orange curve: Z). 

As it can be seen in Fig. 3, the addition of a 
charge transfer resistance, an ohmic resistance 
and a double layer capacitance in parallel does 
not lead to a more complicated determination 
of the coefficient diffusion or diffusion time 
constant : the knee-point frequency or the 
fitting results can readily lead to it. 

A better way of saying this is that, whether the 
insertion reaction is reversible (𝑅ct ≪ 𝑅d) or 
neither reversible nor irreversible (𝑅ct ≈ 𝑅d), 
which is the case in Fig. 3b, the diffusion time 
constant can be determined.  

In the case of an irreversible reaction (𝑅ct ≫
𝑅d), since diffusion is not the limiting step, the 
determination of the diffusion time constant is 
not relevant. Furthermore, the absence of a 
knee-point frequency makes it more difficult to 
determine the diffusion time constant, 
especially if the measurements are noisy. 



A more complete description of the diffusion 
impedances can be found in the Diffusion 
Impedances Handbook [7]. 

This typical shape of the impedance diagram of 
the insertion processes can be found in many 
recent publications [8-13]. 

In case the low frequency part of EIS data do 
not show a knee-point but only a 45 ° angle, it 
is advised to perform a measurement at lower 
frequencies. In this case, it might be useful to 
check the NSD indicator and possibly correct 
the effect of the time-variance of the system on 
your data [14,15]. 

2. PITT 

This technique consists of applying a 
succession of potential steps of constant height 
as described in Fig. 4a. The PSCA (Potential Step 
ChronoAmperometry) consists in applying one 
single step (Fig. 4a). The typical current 
response is shown in Fig. 4b. 

a)  

b)

Figure 4 : a) Principles of the PITT and PSCA 
techniques b) Typical current response. 

If we consider a reversible insertion reaction 
(ie. a low charge transfer resistance), no ohmic 
drop, no double layer capacitance, no phase 
transitions, a linear restricted diffusion 
mechanism and finally, a potential step of small 
amplitude, the diffusion coefficient of a guest 
species can be determined either from the 
short-time expression of the diffusion current 
(Cottrel relationship) or from the long-time 

domain where an exponential decay of current 
is predicted [16-19]. 

 The short-time or Cottrell relationship: 

𝐼d(𝑡)st =
𝐹𝐴√𝐷∆𝑐

√π𝑡

 The exponential decay at long times: 

𝐼d(𝑡)lt = −2𝐹𝐴
𝐷

𝐿
∆𝑐 exp (−

π2𝐷𝑡

4𝐿2 )

With, 𝐹 the Faraday constant, 𝐴 the interfacial 
surface area, 𝐷 the diffusion constant of the 
guest species, 𝐿 the thickness of the host 
electrode, ∆𝑐 the variation of guest species 
concentration due to the potential step, 𝑡 the 
time. 

Taking the decimal logarithm of both sides in 
Eq. (8) and plotting log |𝐼(𝑡)| 𝑣𝑠. 𝑡, the 
diffusion time constant can be obtained from 
the slope Sl𝐼lt

 of the portion of straight line 

(Fig. 5), using the following relationship: 

τd =
π2

4 ln10 Sl𝐼lt

 

Figure 5 : Semi-logarithmic representation of the 
time current response of a supercapacitor, 
assuming it behaves as a one electrode system, to 
a potential step. 

From the time constant we can obtain the 
diffusion coefficient 𝐷, knowing the electrode 
thickness 𝐿: 

τd =
𝐿2

𝐷

Again, this procedure is only valid when the 
impedance graph of the concerned electrode 
only shows a knee-point at low frequency 
(Fig. 2).  

If there is a non-negligible charge transfer 
resistance, an ohmic resistance and double 
layer capacitance, Eq. (9) can be used but will 



only lead to an apparent diffusion or time 
constant. A different equation could be 
calculated but would require numerical tools 
[20]. 

Warning 

Applying this method on a full battery cell with 
two electrodes will lead to the determination 
of an average apparent diffusion or time 
constant. A three-electrode setup is needed to 
separately study the positive or the negative 
electrode. 

3. GITT 

As first described by Weppner and Huggins [2], 
the GITT technique consists of applying a 
succession of current steps as with the one 
illustrated in Fig. 6. 

a)  

b)  

Figure 6 : a) Schematic illustration of a single step 
of the Galvanostatic Intermittent Titration 
Technique (GITT) ; b) Potential response with 
∆𝑬𝐭, the total transient voltage change of the cell 
for a current 𝑰𝟎for the time 𝛕 and ∆𝑬𝐬 the change 
of the steady-state voltage (from [5]). 

 

Assuming a negligible ohmic drop and a small  
current step 𝐼0 (to ensure the linear behaviour 
of the system) the diffusion coefficient of the 
inserted species can be determined with the 
following relationship [2,3,21]: 

𝐷 =
4

πτ
(

𝐼0𝑉

𝑧F𝐴
)

2

(
∆𝐸s

∆𝐸t
)

2

 

With 𝑉 the molar volume of the insertion 
material, 𝑧 the number of exchanged electrons 
in the reaction, 𝐹 the Faraday constant, 𝐴 the 
surface of the electrode/electrolyte interface.  

Another method is to adopt the same strategy 
as for PITT, that is to say to consider the 
response at longer times.  

Using numerical techniques and again 
provided that the influence of interfacial 
kinetics and Ohmic potential drop is 
disregarded, the potential response of a 
reversible insertion reaction to a current step 
writes [22]: 

∆Et

= 𝑅d𝐼0 (
1

3
+

𝑡

τd

−
2

π2
∑

1

𝑘2
exp (−𝑘2π2

𝑡

τd
)

∞

𝑘=1

)

Which simplifies at long times: 

∆𝐸𝑡,lt =
𝑅d𝐼0

3
+

𝑅d𝐼0𝑡

τd

With 𝐼0 the current step, and ∆𝐸𝑡,lt the 

potential response at long times. 𝑅d and τd 
have the same meaning as in Eq. 3. 

According to Eq. 13, plotting ∆𝐸𝑡  𝑣𝑠. 𝑡, we can 
measure the slope at long times: 

|Sl𝐸lt
| =  

𝑅d𝐼0

τd

And the ordinate at the origin: 

O0 =
𝑅d𝐼0

3

Combining Eqs. 14 and 15, it gives: 

τd = 3
O0

|Sl𝐸lt
|

 

III. Experimental results 

1. Tested and testing devices 

For the sake of simplicity and robustness, we 
chose to perform measurements on : 

a) a TOKIN supercapacitor of 1 F and max 
voltage of 5.5 V that is used in the AC dummy 
cell for the battery cyclers series BCS-805, BCS-
810 and BCS-815 (Fig. 7). 



Figure 7 : Modified AC BCS dummy cell to allow 
connection on the TOKIN 1 F supercapacitor only 

b) the Dummy Cell provided with the BCS to 
test EIS capability and is composed of a series 
resistance and two RC’s in series with the 
above-mentioned supercap (Fig. 8): 

Figure 8  Connection on the modified battery 
cycler BCS series dummy cell. The nominal values 
of the components are: R1 = 1 Ω; C1 = 22 µF ; R2 
= 10 Ω; C2 = 1.1 mF ; R3 = 20 Ω ; C3 = 1 F 

A BioLogic VMP3 potentiostat was used to 
perform the measurements, except for the 
measurements with ohmic drop compensation 
where a BioLogic SP-300 potentiostat was 
used. The necessity of using the BioLogic SP-
300 potentiostat is explained in the Appendix. 

2. Results 

a EIS 

Figure 9 shows the Nyquist diagram of the 
impedance data obtained on the Tokin 1 F 
supercapacitor using the GEIS technique with 
adaptive amplitude (GEIS-AA). The conditions 
of the experiment are shown in Figure 10. 

It can be seen on the impedance graph in Fig. 9 
that although the supercapacitor is made of 
two electrodes where the insertion reactions 
occur in opposite direction, it behaves as if 
there was only one insertion reaction, that can 
be characterized by one single diffusion time 
constant. 

Figure 9: Nyquist impedance diagram obtained 
on a Tokin 1 F 5.5 V supercapacitor with the 
fitting results. 

Figure 10 : Parameters of the GEIS 
technique used to obtain the results in Figure 8. 

Fitting the results using Z Fit and an R1 + M1 
equivalent circuit give the following values for 
the parameters: 

R1 = 7.04 Ω; Rd1 = 29.2 Ω; td1 = 22.3 s 
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The presence of a series resistance is due to the 
fact that this is not an ideal supercapacitor. 
Figure 11 shows the results obtained on the full 
AC dummy cell for BCS and the fitting results in 
red 

 

Figure 11 : Nyquist impedance diagram 
obtained on the Dummy Cell AC for BCS with the 
fitting results. 

Using an R1 + R2/C2 + R3/C3 + M1 equivalent 
circuit and Z Fit, we obtain the following 
parameters values: 

R1 = 7.35 Ω; C2 = 16.0 µF; R2 = 10.5 Ω; C3 = 
1.05 mF; R3 = 20.1 Ω; Rd4 = 29.0 Ω; td4 = 22.1 s 

We can see that we obtain very close values 
with both systems for the series resistance R1, 
the diffusion resistance Rd and the diffusion 
time constant td. 

At low frequencies, the element M is 
equivalent to the circuit R + C with: 

 
𝑅 = 𝑅d 3⁄

and 
𝐶 = 𝜏d 𝑅d⁄

which gives the results shown in Table I. 
 
Table I  Parameters values measured by EIS at 
low frequencies 

Parameters 
values 

 𝝉𝐝/s 𝑹/Ω 𝑪/mF 

TOKIN 
Supercap 

 22.3 9.73 763 

Dummy cell 
AC BCS 

 22.1 9.67 762 

 
The capacitance values obtained are very close 
to each other and not so far from the nominal 
value, which is 1 F. This shows that the time 
constant values as measured by EIS are correct. 
 

To conclude, it can be seen that the diffusion 
kinetic parameters can be quite easily obtained 
by EIS, independently from the presence of 
ohmic drop, additonal capacitances and charge 
transfer resistances. 
 

b PITT 

A potential step of 10 mV was applied on the 
supercapacitor for 1 min (Fig. 12). The results 
are shown in Figure 13. 

Figure 12 : Parameters used to perform 
the PITT (PSCA) experiment on the 
supercapacitor and the dummy cell AC BCS.  

Figure 13 shows the logarithm of the current 
response of the supercapacitor submitted to a 
10 mV potential step. The curve follows an 
affine law at long times. The initial potential of 
the supercap was 0.985 V. 

The slope given by the Linear Fit tool is 
- 0.0263 s-1, which, using Eq. 9 gives a time 
constant of 40.7 s. 

Using an ohmic compensation technique to 
account for the presence of a series resistance 
allows users to obtain a different slope of 
– 0.0399 and a time constant of 26.9 s, closer 
to the value obtained by EIS. Please see 
Appendix for the results as well as the 
corresponding BioLogic application notes [23-
25]. 
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Figure 13 : Decimal logarithm of the 
current response of the TOKIN supercapacitor to 
a 10 mV potential step with the Linear Fit tool in 
EC-Lab® to calculate the slope. 

Figure 14 shows the current response of the full 
AC BCS dummy cell to a 10 mV potential step. 
The slope obtained using the EC-Lab® Linear Fit 
tool is -0.011 s-1, which gives a time constant of 
97.4 s, very far from the value obtained by EIS. 
This shows that Eq. 5 is only valid for systems 
where there is no ohmic drop, no additional 
capacitances and charge transfer resistances. 

Using ohmic drop compensation, we find a 
time constant of 85.8 s, which is a little better 
but still far from the value found by EIS. 

Figure 14 : Decimal logarithm of the 
current response of the full BCS AC dummy cell to 
a 10 mV potential step with the Linear Fit tool in 
EC-Lab® to calculate the slope. 

c GITT 

Figure 15 shows the potential response of the 
TOKIN supercap to an ascending and then 
descending 250 µA current step. The control 
parameters of the step are given in Fig. 16. The 
linear fit tool gives us the value of the slope of 

the potential response at long times and the 
ordinate at the origin, 0.313 mV/s and 
1061.0 mV, respectively. The ordinate at the 
origin must be corrected by the initial potential 
value 1 057.2 mV. Using Eq. 16, this gives a time 
constant of 36.4 s. 

Figure 15 Potential response of the 
TOKIN 1 C supercap to an ascending and 
descending 250 µA current step

Figure 16 : Parameters of the current step 
used to obtain the potential response shown in 
Figs. 15 and 17. 

The plot shown in Fig. 15 could be corrected 
from the ohmic drop. The ohmic or series 
resistance can be calculated using the method 
described in Fig. 6.  

The ohmic drop 𝑅Ω𝐼 is equal to 𝐸1 − 𝐸0, where 
𝐸1 and 𝐸0 are the second and first potential 
values on the 𝐸 𝑣𝑠. 𝑡 curve, respectively. 

The corrected curve is shown in Fig. 17 
(obtained using Excel): 



Figure 17 Potential response from Fig. 16 
subtracted from the initial potential and the 
ohmic drop RI 

Using the the equation of the trendline and 
Eq. 16, it gives a time constant of 26.3 s. 
Correcting from the ohmic drop gives a value of 
the time constant, that is close to the one 
obtained with EIS and PITT 

We can perform the same analysis on the 
results obtained on the full dummy cell. 

Figure 18 Potential response difference 
ΔE of the AC BCS dummy cell to an ascending and 
descending 250 µA current step. 

The slope is 0.315 mV/s and the ordinate at 
origin 0.0115 V, which gives a time constant of 
110.0 s, which, as for PITT, is also overrated. 

We can measure the ohmic drop which 
corresponds to the potential value of the 
second point in Fig. 18: 1.89 mV. 

The compensated 𝐸 𝑣𝑠. 𝑡 curve is shown in 
Fig. 19 (obtained using Excel). Again, using the 
slope and the ordinate at origin as well as 
Eq. 16 gives a time constant of 91.7 s, which is 
still far from the EIS value but yet a little bit 
closer than without compensation. 

 

Figure 19 : Potential response difference 
ΔE with ohmic drop correction of the AC BCS 
dummy cell to an ascending and descending 250 
µA current step. Only the linear part of the 
response to the ascending step is shown. 

Table II below shows a summary of the values 
obtained for the time constants in s with each 
method. The values highlighted in green are 
correct. The ones highlighted in yellow are 
almost correct and the values in highlighted in 
red are far from being correct. 

Table II Diffusion time constants in s obtained on 
the TOKIN supercap and the AC-BCS dummy cell 
for each method. 

Method Supercap AC dummy cell 
EIS 22.3 22.1 

PITT 40.7 97.4 
PITT (RI) 26.9 85.8 

GITT 36.4 110.0 
GITT (RI) 26.3 91.7 

 

IV. Conclusions 

In this note, DC and AC methods to obtain the 
diffusion time constants were presented. From 
the results shown in Table II it seems clear that, 
considering a single electrode: 

i) Only EIS can give access to the a correct value 
of the time constant, when the studied system 
is not reversible and has non-negligible 
capacitances and charge transfer resistances. 

ii) If the system is reversible but has a series 
resistance, methods to compensate this series 
resistance are proved to be somewhat 
efficient. 

iii) The simple and classical equations (Eqs. 9 
and 16) that can be used with PITT and GITT 
techniques to provide diffusion time constants 
and coefficients are only applicable when the 
system is a single electrode, where a totally 
reversible insertion reaction takes place with 



negligible charge transfer resistances and 
double layer capacitances. 

If the system is composed of several charge 
transfer resistances and double layer 
capacitances, for example an electrode in a 
battery cell, or the full battery cell, composed 
of two electrodes, numerical methods are 
required to derive the right temporal equations 
[20]. 
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APPENDIX 
To perform the PITT measurements with 
compensated series resistance, we used the 
ZIR technique to measure the ohmic drop. It 
consists in an EIS measurement at a single 
frequency. Although it is a better method than 
current interrupt (CI) it is not ideal, especially 
in the case where high frequency inductance is 
not negligible, as can be seen in batteries. This 
aspect is better explained in BioLogic 
Application Note 29 [25]. 

Also, it was necessary to use the smallest 
potential range available giving the smallest 
resolution, that is to say 1 µV, such that the 
correction does not trigger large current drops. 
This potential range also requires the use of 
BioLogic Premium range instruments, ie in this 
case SP-300 potentiostat. Figures 20 and 21 
show the parameters and the results, 
respectively. 

a)

b)

Figure 20 : a) ZIR parameters and b) CA 
parameters used to obtain the PITT curves with 
compensated ohmic resistance shown in Fig. 21. 

 

a)

b)  

Figure 21 PITT curves with series 
resistance compensation for a) the TOKIN 
supercapacitor and b) the AC BCS dummy cell. 
The ohmic resistance was measured by ZIR 
technique.
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